

CABIN AIR FILTER PERFORMANCE TEST ON PARTICLE FILTERS

TEST REPORT NCL 210202

Mainleus, May 26th, 2021

acc. to DIN 71460 -1

initiated by:

Nordfil LCC

Больше об автомобильных фильтрах NORDFIL на сайте www.nordfil.ru

Test conditions

1. Objectives and test set-up

This test project focused on the filtration performance of cabin air filters according to Nissan specification 27275NDS00 [5] (Renault 32-02-832 -- I) and the test procedure below. All test conditions and parameters not given will be chosen according to DIN 71460-1 "Air filters for passenger compartments".

a)	Test requested by:	Nordfil LCC
b)	Test specimen / Construction:	Cabin air filter with flexible textile frame
C)	Model / Parts ID:	Nissan CAF
d)	Flow direction:	see picture on front page (acc. air flow arrow)
e)	Label / Identification:	MEDIA-1
f)	Dimensions:	ca. 250 x 180 x 36 mm
g)	Samples received:	March 9 th , 2021 (*P1.2 and P2)
		April 12 th , 2021
h)	Test performed:	March 15 th – 16 th , April 20 th and May 07 th – 20 th , 2021

200 / 500 m³/h
23°C ± 3°C
50% ± 5%
1. Sodium Chloride (2% NaCl)
2. ISO 12103-1 A2 fine
1. 0,05 – 0,5 μm
2. 0,5 – >10 μm
1. SMPS (TSI Inc.)
2. APS 3321 (TSI Inc.)
75 mg/m ³

A SMPS (Scanning Mobility Particle Sizer, TSI Inc.) was used to determine the fractional efficiencies in the particle size range of 0,05 to 0,5 μ m. For efficiency measurements in the size range of 0,5 to >10 μ m (aerodynamic) an APS 3321 (Aerodynamic Particle Sizer, TSI Inc.) was used.

To generate the sodium chloride aerosol an atomizer AGK 2000 (PALAS GmbH) was used. The test dust (ISO 12103-1 A2 fine) was injected using a rotating brush generator (RBG 1000 PALAS GmbH). It has not been electrostatically neutralized.

The fractional filter efficiency graphs were derived from a total of six measurements of particle size distributions. Three measurements were taken upstream and three were taken downstream of the filter. The figures and the tables in the attachments show the average values of the three efficiency measurements next to the total scattering range for each size channel.

The accuracy of the airflow control is 2% of the nominal value.

Pressure drops were measured using three sensors of the ranges 0 - 100, 0 - 500 and 0 - 3000 Pa. The accuracy of the pressure transducers is 1% of the range maximum.

Table 1: Test procedure

No.	Test fiatec-no.: NCL 210202_	P1	P1.2	P2	Р3	P4	P5	P6	P7	P8
IN01	Dimension and number of pleats	х	Х	х	х	Х	х	х		
	Filter weight	х	Х	х	х	x	X	x		
IN02	Conditioning under test conditions	х	Х	х	х	x				
RE04	Conditioning in climate chamber acc Renault Spec.							x		
INO4/ FRO1	Pressure drop curve 0-600 m³/h +450 m/h		x							
FR04	Fractional filtration efficiency 0,05-0,5 µm, 2% NaCl, 200 m³/h		x							
FR02	Fractional filtration efficiency >0,5 µm, A2, 200 m³/h		x							
FR02	Fractional filtration efficiency >0,5 µm, A2, 500 m³/h		x					х		
FR03	Fractional filtration efficiency >0,5 µm, Mulberry Paper, 300 m³/h			х						
FR02 /04	Dust holding capacity, A2, +50 Pa	x								
	Filter weight	x								
FR04	Fractional filtration efficiency 0,05-0,5 µm, 2% NaCl, 200 m³/h	x								
FR02	Fractional filtration efficiency >0,5 µm, A2, 200 m³/h	x								
FR02	Fractional filtration efficiency >0,5 µm, A2, 500 m³/h	×								
FR02	Dust holding capacity, A2, +100 Pa	х								
	Filter weight	х								Х
FR04	Fractional filtration efficiency 0,05-0,5 µm, 2% NaCl, 200 m³/h	x								
FR05	Dust holding capacity, A2, +200 Pa				х	Х				х
	Filter weight				х	Х				х
FR05	Gravimetric Efficiency or Loss				х	Х				
REO1	Resistance to overpressure, 1000Pa, 1 min				х					
	Dust holding capacity, A2, until 1000 Pa, 200 m³/h					х				
	Filter weight				х	Х				
REO1	Gravimetric Efficiency or Loss					Х				
RE05	Fungal test acc. EN ISO 846 A+C, media+adhesive/frame								х	
RE05	Water resistance acc Nissan Specification						х			
RE05	Dimensions, Visual Inspection						х			

Ageing Test according specification (RE04)

The climate change test has been done in a climate chamber with an accuracy of temperature control of \pm 1°C and \pm 3% rel. humidity.

Following the procedure described in specification 32-02-832/--I the storage of the filter in circulating air was:

- 7 hours at 23°C - 5 hours at 85°C
- 7 hours at 23 °C
- 5 hours at -30°C

After the storage the fractional efficiency with A2 at an air flow of 500 m³/h had to be measured.

Pic. 1: NCL 210202_P6 after ageing

Filter length (frame) and width did not change. (The pleats are a little bit closer to each other, but no visible damages)

2. Test results

Following tables show a summary of important test results. The detailed results are reported in the attachments 1 through 8.

Table 2: Summary of the pressure drop results

Filter	Filter state	Flow rate [m ³ /h]						
		100	200	300	400	450	500	600
				Pre	essure drop [Pa]		
P1.2	new	12	26	42	59	70	82	105

Table 3: Summary of the efficiency results

Particle size (geometric) [µm]	new 200 m³/h P1.2 [%]	new 500 m³/h P1.2 [%]	loaded +50Pa 200 m³/h P1 [%]	loaded +50Pa 500 m³⁄h P1 [%]	new 300 m³/h P2 [%]	aged 500 m³/h P6 [%]	Particle counter
0,05	76		78	83			
0,1	70		66	/3			
0,2	58		59	68			SMPS
0,3	53	_	61	69	_	_	(NaCl)
0,4	53		65	74			
0,5	54		73	81			
(aerodynamic)	A2	A2	A2	A2	Mulberry	A2	
0,5	95,0	86,9	93,3	85,1		82,9	
1,0	96,1	89,4	95,7	94,8	Mean	87,5	
3,0	99,0	96,8	>99,9	>99,9	value:	94,7	
5,0	99,8	97,3	>99,9	>99,9		93,1	AFS
7,0	99,8	97,3	>99,9	>99,9	99,1	92,8	
10,0	>99,9	97,5	>99,9	>99,9		92,6	

	+50Pa	+100Pa	+200Pa	1000Pa
Dust holding cap. (g), P1	12,4	17,2	-	-
Dust holding cap. (g), P3	-	-	20,2	-
Grav. Efficiency (%) P3	-	-	99,3	-
Dust holding cap. (g), P4	-	-	21,0	40,5
Grav. Efficiency (%), P4	_	-	99,0	99,2
Dust holding cap. (g), P8	_	-	20,8	-
Grav. Efficiency (%), P8	-	-	99,4	- /

Table 4: Summary of the dust holding capacity and gravimetric efficiency

2.2 Water Resistance (RE05)

For the determination of the behavior during water exposition the filters are dipped in water for 30 min, and then allowed to drip of excessive water from both sides for 60 sec and dry for 5 min. After installation in the test rig the pressure drop at an air flow of 600 m³/h has been recorded until +5% of the initial pressure drop or up to 60 min.

Table 5: Summary of the water resistance test

	Pressure Drop at	Time until +5 %	Pressure Drop at	Time after end of
	600 m³/h, new	(115 Pa)	end of test	test
	[Pa]	[min]	[Pa]	[min]
P5	110	8	114	60

Pic. 1: NCL 210202 after water resistance test

2.3 Resistance to Over pressure (REO1)

On the clogged filter (P3, +200 Pa) by increasing the air flow a Δp of 1000 Pa will be applied for a period of 1 minute.

Mf1: weight of clogged filter before the test / Mf2 : weight of filter after the test.

M : weight of dust collected by the tested filter up to 200 Pa. Requirements : Mf1 - Mf2 < 5% of M

Table 6: Test results overpressure test

	Mf1	MF2	Μ	Mf1-Mf2	Mf1-Mf2 / M
	[g]	[g]	[g]	[g]	[%]
P4	94,1	93,2	20,2	0,46	2,3

Mf1 / MF2: Mass before and after Over Pressure Test

Mf1-Mf2: Released mass from Filter

M: Mass loaded up to +200 Pa

2.4 Fungal Test acc. EN ISO 846 A+C

One filter element was sent to did the tests as cooperation partner. Test report number: 07-10047-21

Table 7: Evaluation of the results for the tested products

	Procedure A Basic resistance against fungal growth in absence of organic contamination		Procedure C Resistance against bacteria		
Material	Growth intensity	Growth Evaluation of the intensity material		Evaluation of the material	
Particle filter media	0	The material contains no nutrients for the growth of fungi. It is "inert" or "fungistatic".	No growth	The material contains no nutrients for the growth of bacteria.	
Frame + adhesive of the particle filter	0	The material contains no nutrients for the growth of fungi. It is "inert" or "fungistatic".	No growth	The material contains no nutrients for the growth of bacteria.	

The full test report is attached.

(Managing Director)

No. of attachments: 7 Attachment 1 - 6: Summary of Test Results of Sample NCI 190301_P1-P6+P8 test report 07-10047-21 which

Summary of test results for sample MEDIA-1 fiatec-no.: NCL 210202-P1

1. Particle collection efficiency

Test dust:	ISO 12103-1 A	42 (PTI)	Particle count	ter:	APS 3321
		A2, loadi	ng to +50Pa	A2. loadin	ig to +50Pa
Flow rate		20	0 m³/h	500) m³/h
Particle size (aerodyn.)	Particle size (geometric)	η _{mean} *	Δ _{max} **	η _{πean} *	Δ _{max} **
[µm]	[µm]	[%]	[%]	[%]	[%]
0,54	0,33	93,3	0,1	85,1	0,2
0,54 0,58 0,63 0,67 0,72 0,78 0,84 0,90 0,97 1,04 1,11 1,20 1,29 1,38 1,49 1,60 1,72 1,84 1,98 2,13 2,29 2,46 2,64 2,84 3,05 3,28	0,33 0,36 0,38 0,41 0,44 0,48 0,51 0,55 0,59 0,64 0,68 0,74 0,79 0,85 0,91 0,98 1,05 1,13 1,22 1,31 1,41 1,51 1,62 1,74 1,87 2,01	93,3 93,5 93,8 94,1 94,2 94,6 94,9 95,3 95,6 95,9 96,5 96,8 97,3 97,8 98,6 98,9 99,1 99,4 99,4 99,6 99,7 99,8 99,7 99,8 99,9 >99,9 >99,9 >99,9	0,1 0,1 0,3 0,1 0,2 0,1 0,1 0,2 0,2 0,2 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	85,1 85,9 87,0 88,5 89,7 91,0 92,3 93,3 94,3 95,3 96,1 96,9 97,6 98,2 98,7 99,0 99,6 99,7 99,6 99,7 99,7 99,7 99,7 99,7	0,2 0,3 0,1 0,2 0,2 0,2 0,2 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,0 0,1 0,0 0,0
3,52 3,79 4,07 4,37 4,70 5,05	2,16 2,33 2,50 2,69 2,89 3,10	>99,9 >99,9 >99,9 >99,9 >99,9 >99,9 >99,9	0,0 0,0 0,0 0,0 0,0 0,0	>99,9 99,8 >99,9 >99,9 >99,9 >99,9 >99,9	0,0 0,0 0,1 0,0 0,1 0,0
5,43 5,83 6,26 6,73 7,23 7,77 8,35 8,98 9,65 10,37 11 14	3,33 3,58 3,85 4,14 4,44 4,78 5,13 5,51 5,93 6,37 6,84	>99,9 >99,9 >99,9 >99,9 >99,9 >99,9 >99,9 >99,9 >99,9 >99,9 >99,9 >99,9	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	>99,9 >99,9 >99,9 >99,9 >99,9 >99,9 >99,9 >99,9 >99,9 >99,9 >99,9	0,1 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

* η_{mean} is the average particle collection calculated from three sets of up- and downstream measurements

** Δ_{max} represents the full scattering range of single values for each size channel

*** Particle Size (geometric) = Particle Size (aerodynamic)/root from the density of the test aerosol

Summary of test results for sample MEDIA-1 fiatec-no.: NCL 210202-P1

Test dust:	NaCI (2%)		Particle count	SMPS	
					-
Flow rate: 200 m ³ /h	NaCl, loadir	ng to + 50Pa	NaCl, loadin	g to + 100Pa	
Particle size (mobility diameter)	η _{men}	Δ _{max} **	η _{πeen}	Δ _{max} **	
[µm]	[%]	[%]	[%]	[%]	
0,029 0,034	86,2 84,1	0,6 0,4	90,9 89,0	0,9 0,8	1
0,039 0,045	82,1 79,9	1,1 0,8	87,1 85,1	0,7 0,4	
0,052 0.060	77,7 75,4	0,8 0,6	82,7	0,4	
0,070	72,4	0,7	78,2	0,5	
0,093	67,7	0,8	73,9	0,2	
0,108 0,124	64,7	0,4 0,9	71,6	0,6 0,2	
0,143 0,166	60,8 59,8	0,5 0,2	69,1 68,3	0,8 0,8	
0,191	58,7	0,9	67,6	1,1	
0,255	58,8	2,2	68,2	1,1	
0,294 0,340	62,2	1,0	71,4	0,7	
0,392 0.453	64,6 69,4	3,2 1,6	74,0	2,6	
0,523	76,2	1,7	83,7	1,9	

* η_{mean} is the average particle collection efficiency calculated from three sets of up- and downstream measurements ** Δ_{max} represents the full scattering range of single values for each size channel

Particle size	Efficiency [%]	Efficiency [%]		
[µm] (mobility)	NaCl, loading to + 50Pa	NaCl, loading to + 100Pa		
0,05	78	83		
0,1	66	73		
0,2	59	68		
0,3	61	69		
0,4	65	74		
0,5	73	81		
[µm] (aerodyn.)	A2, loading to +50Pa	A2, loading to +50Pa		
Flow rate:	200 m³/h	500 m³/h		
0,5	93,3	85,1		
1,0	95,7	94,8		
3,0	>99,9	>99,9		
5,0	>99,9	>99,9		
7,0	>99,9	>99,9		
10,0	>99,9	>99,9		

Summary of test results for sample MEDIA-1 fiatec-no.: NCL 210202-P1

2. Pressure drop

Flow rate [m ³ /h]	200
New filter [Pa]	26

3. Dust loading

Flow rate: 200 [m³/h]

Test dust: ISO 12103-1 A2 (PTI)

Δp _{Initial}	[Pa]	26	
Mass new filter	[g]	74,1	
Mass after aging	[g]	N/A	
Mass conditioned	[g]	74,1	Dust holding capacity [g]
Mass +50 Pa	[g]	86,5	12,4
Mass _{+100 Pa}	[g]	91,3	17,2

Diagram: Fractional collection efficiency

Particle collection efficiencies

Page 4/4

Summary of test results for sample MEDIA-1 fiatec-no.: NCL 210202-P1.2

1. Particle collection efficiency

Test dust:	ISO 12103-1 /	42 (PTI)	Particle count	ter:	APS 3321
		A2, ne	ew filter	A2, ne	w filter
Flow rate:		200 m³/h		500	m³/h
Particle size (aerodyn.)	Particle size (geometric)	η _{mean}	∆ _{max} **	η _{mean}	Δ _{max} **
[µm]	[µm]	[%]	[%]	[%]	[%]
0,54	0,33	95,0	0,1	86,9	0,3
0,58	0,36	95,1	0,1	87,0	0,6
0,63	0,38	95,2	0,0	87,3	0,4
0,67	0,41	95,3	0,1	87,6	0,2
0,72	0,44	95,6	0,1	87,8	0,2
0,78	0,48	95,7	0,2	88,0	0,1
0,84	0,51	95,8	0,0	88,4	0,4
0,90	0,55	95,9	0,1	89,0	0,1
0,97	0,59	96,0	0,2	89,2	0,3
1,04	0,64	90,2	0,1	09,7	0,2
1,11	0,08	90,5	0,1	90,1	0,4
1 29	0.79	96.6	0,1	91.3	03
1.38	0.85	96.8	0.1	91.9	0.3
1.49	0.91	97.0	0.2	92.6	0.1
1,60	0,98	97,3	0,2	93,2	0,1
1,72	1,05	97,5	0,1	94,0	0,2
1,84	1,13	97,7	0,2	94,6	0,0
1,98	1,22	97,9	0,1	95,1	0,4
2,13	1,31	98,1	0,2	95,5	0,4
2,29	1,41	98,3	0,2	96,1	0,4
2,46	1,51	98,5	0,1	96,3	0,2
2,64	1,62	98,7	0,1	96,8	0,3
2,84	1,74	98,9	0,2	90,8	0,4
3,05	2.01	99,0	0,0	97.0	0,4
3 52	2,01	99.2	0,2	97.1	0,5
3,79	2.33	99.3	0.2	97.3	0.4
4,07	2,50	99,6	0,2	97,5	0,2
4,37	2,69	99,4	0,2	97,5	0,8
4,70	2,89	99,7	0,2	97,4	0,2
5,05	3,10	99,8	0,0	97,3	0,4
5,43	3,33	99,8	0,2	97,5	0,6
5,83	3,58	99,8	0,3	97,5	0,7
6,26	3,85	99,9	0,2	97,4	0,3
6,/3	4,14	99,8	0,2	97,3	0,9
1,23	4,44	99,9	0,2	97,3	1,/
8 35	4,70	>99,9	0,0	97,5	0.4
8 98	5,15	>99.9	0,0	97.5	0,4
9,65	5,93	>99.9	0,0	97.5	1.2
10.37	6,37	>99.9	0.0	97.5	1.1
11,14	6,84	>99,9	0,0	97,1	0,0

* η_{mean} is the average particle collection calculated from three sets of up- and downstream measurements

** Δ_{max} represents the full scattering range of single values for each size channel

*** Particle Size (geometric) = Particle Size (aerodynamic)/root from the density of the test aerosol

Summary of test results for sample MEDIA-1 fiatec-no.: NCL 210202-P1.2

Fest dust:	NaCI (2%)		Particle counter:	SMPS
Flow rate: 200 m³/h	NaCl, new fi	ilter 200 m³/h		
Particle size (mobility diameter)	η _{mean}	∆ _{max} **		
(µm)	[%]	[%]	1	
0,029	76,1	0,9	1	
0,034	76,7	0,3		
0,039	76,8	0,1		
0,045	76,6	0,1		
0,052	76,1	0,3		
0,060	75,9	0,6		
0,070	74,5	0,2		
0,081	73,4	0,4		
0,093	71,0	0,5		
0,108	68,4	0,2		
0,124	66,2	0,5		
0,143	63,8	0,9		
0,166	61,4	0,7		
0,191	58,1	1,1		
0,221	55,8	0,9		
0,255	54,7	0,5		
0,294	53,2	0,8		
0,340	52,5	1,4		
0,392	52,8	1,8		
0,453	53,9	1,6		
0,523	55,1	0,9		

* η_{mean} is the average particle collection efficiency calculated from three sets of up- and downstream measurements ** Δ_{max} represents the full scattering range of single values for each size channel

Particle size	Efficiency [%]	
[µm] (mobility)	NaCl, new filter 200 m ³ /h	
0,05	76	
0,1	70	
0,2	58	
0,3	53	
0,4	53	
0,5	54	
[µm] (aerodyn.)	A2, new filter	A2, new filter
	200 m³/h	500 m³/h
0,5	95,0	86,9
1,0	96,1	89,4
3,0	99,0	96,8
5,0	99,8	97,3
7,0	99,8	97,3
10,0	>99,9	97,5

Summary of test results for sample MEDIA-1 fiatec-no.: NCL 210202-P1.2

2. Pressure drop

Flow rate [m ³ /h]	100	200	300	400	450	500	600
New filter [Pa]	12	26	42	59	70	82	105

Pressure drop

3. Mass

Mass new filter	[g]	74,9

Diagram: Fractional collection efficiency

Particle collection efficiencies

Page 4/4

Summary of test results for sample MEDIA-1 fiatec-no.: NCL 210202-P2

1. Particle collection efficiency

Test dust:	Mullberry paper		Particle counter:	APS 3321
Air flow: 300 m ³ /	h Mullberry pap	er, new filter		
Particle size (aerodyn.)	ຖ _{.ສ. ean}	Δ _{max} **		
[µm]	[%]	[%]		
7,23	98,9	0,2		
7,77	99,1	0,4		
8,35	99,2	0,6		
8,98	99,1	0,5		
9,65	99,2	0,4		
10,37	99,2	1,2		
11.14	99.1	0.6		

* η_{mean} is the average particle collection calculated from three sets of up- and downstream measurements

** Δ_{max} represents the full scattering range of single values for each size channel

*** Particle Size (geometric) = Particle Size (aerodynamic)/root from the density of the test aerosol

Particle size	Efficiency [%]
[µm] (aerodyn.)	Mullberry paper, new filter
7,0	98,9
10,0	99,2

2. Pressure drop

Air flow [m ³ /h]	300
New filter [Pa]	41

3. Mass

Mass New filter	[9]	74,7
-----------------	-----	------

Diagram: Fractional collection efficiency

Particle collection efficiencies

Summary of test results for sample MEDIA-1 fiatec-no.: NCL 210202-P3

...

1. Dust loading	Flow rate:	200 [m³/h]	Test dust:	150 12103-1	42 (PTI)
Δp Initial	[Pa]	24]		
Mass new filter	[g]	73,9			
Mass after aging	[g]	N/A	Duct holding conscituted	+Mass	Gravimetric efficiency
Mass conditioned	[g]	73,9	Dust holding capacity [g]	[g], cum	[%] cum
Mass +200 Pa	[g]	94,1	20,2	0,15	99,3

Summary of test results for sample MEDIA-1 fiatec-no.: NCL 210202-P4

			-		
Δp Initial	[Pa]	26			
Mass new filter	[g]	73,7			
Mass after aging	[g]	N/A	Dust holding capacity [g]	+Mass	Gravimetric efficiency
Mass conditioned	[g]	73,7	Dust holding capacity [g]	[g], cum	[%] cum
Mass +200 Pa	[g]	94,7	21,0	0,21	99,0
Mass 1000 Pa	[g]	114,2	40,5	0,32	99,2

 1. Dust loading
 Flow rate:
 200 [m³/h]
 Test dust:
 ISO 12103-1
 A2 (PTI)

Summary of test results for sample MEDIA-1 fiatec-no.: NCL 210202-P5

1. Water resistance

Flow rate	[m³/h]	600
∆p before test	[Pa]	110
∆p before test +5%	[Pa]	115
∆p after test	[Pa]	114

Mass new filter	[g]	74,4
Mass aged filter	[g]	N/A
Mass after water resistance	[g]	74,5
Mass after drying at 50°C	[g]	74,3

Pressure drop during drying in test duct:

[min]	[Pa]	[min]	[Pa]	[min]	[Pa]
0,0	457	10,0	115	40,0	114
1,0	132	15,0	115	45,0	114
2,0	120	20,0	114	50,0	114
3,0	116	25,0	114	55,0	114
5,0	116	30,0	114	60,0	114
8,0	115	35,0	114		

Comment:

A light metal mesh was used to support the structure of the filter during this test to prevent the filter elements to be sucked through the face plate.

Summary of test results for sample MEDIA-1 fiatec-no.: NCL 210202-P6

1. Particle collection efficiency

Test dust:	ISO 12103-1	A2 (PTI)	Particle count	er:
b			·	
Flow rate: 500 m ³ /h		A2, age	ed filter	
	Particle size			×.
Particle size	(geometric)	n= 000	Δ	
(aerodyn.)	***	muan		
[µm]	[µm]	[%]	[%]	
0,54	0,33	82,9	0,2	
0,58	0,36	83,1	0,1	
0,63	0,38	83,7	0,2	
0,67	0,41	84,3	0,1	
0,72	0,44	85,0	0,2	
0,78	0,48	85,4	0,3	
0,84	0,51	86,1	0,6	
0,90	0,55	86,6	0,2	
0,97	0,59	87,2	0,4	
1 1 1	0,04	885	0,4	
1.20	0.74	89.2	0,4	
1 29	0.79	90.0	0,0	
1.38	0.85	90.8	0.2	
1,49	0,91	91,4	0,4	
1,60	0,98	92,0	0,4	
1,72	1,05	92,8	0,2	
1,84	1,13	93,3	0,5	
1,98	1,22	93,8	0,3	
2,13	1,31	94,2	0,6	
2,29	1,41	94,7	0,4	
2,46	1,51	94,8	0,2	
2,04	1,02	94,7	0,8	
2,04	1,74	94,7	0,5	
3 28	2 01	94.5	0,6	
3.52	2.16	94.1	1.0	
3,79	2,33	93,9	0,3	
4,07	2,50	93,6	0,5	
4,37	2,69	93,5	1,1	
4,70	2,89	93,4	0,5	
5,05	3,10	93,0	1,1	
5,43	3,33	92,8	0,7	
5,83	3,58	92,8	0,6	
6,20	3,85	92,8	1,8	
0,/3	4,14	92,8	0,9	
7,23	4,44	92,7	1.8	
8 35	5 13	92.4	1.5	
8,98	5,51	92.5	1.6	
9,65	5,93	92.6	1,8	
10,37	6,37	92,6	1,3	
11,14	6,84	92,4	1,9	

* η_{mean} is the average particle collection calculated from three sets of up- and downstream measurements

APS 3321

** Δ_{max} represents the full scattering range of single values for each size channel

*** Particle Size (geometric) = Particle Size (aerodynamic)/root from the density of the test aerosol

Summary of test results for sample MEDIA-1 fiatec-no.: NCL 210202-P6

Particle size	Efficiency [%]
[µm] (aerodyn.)	A2, aged filter
0,5	82,9
1,0	87,5
3,0	94,7
5,0	93,1
7,0	92,8
10.0	92.6

2. Pressure drop

Flow rate [m ³ /h]	500
Aged filter [Pa]	133

3. Mass

Mass new filter	[g]	73,9
Mass after aging	[g]	73,7

Diagram: Fractional collection efficiency

Particle collection efficiencies

Summary of test results for sample MEDIA-1 fiatec-no.: NCL 210202-P8

1. Dust loading

Flow rate: 200 [m³/h]

Test dust: ISO 12103-1 A2 (PTI)

Δp snitial	[Pa]	27			
Mass _{new filter}	(g)	73,9	Dust holding capacity	+Mass	Gravimetric efficiency
Mass conditioned		73,9	[g] cum	r [g], cum	[%] cum
Mass +200 Pa	[g]	94,7	20,8	0,13	99,4

Test report 07-10047-21

Customer		Report date:: Number of pages: attachments: Date of order: Sample receipt: Investigation start	19.05.2021 5 none 13.04.2021 15.04.2021 21.04.2021
Customer's project number	NCL 210202		
Subject of analysis	Particle filter Nissan 272774BR1A, filter medium, frame, and adhesive		
Task	Testing of a particle filter according to DIN EN ISO 846:1997, procedures A and C		

Storage

Remaining sample material will be stored for six weeks after the report is issued.

1 Task

The Microbiology Group at the

was assigned to test the components of a particle filter according to DIN EN ISO 846:2019 "Plastics - Evaluation of the action of microorganisms ", procedures A (resistance against fungi – growth test) and C (resistance against bacteria).

2 Testing

Sample material:

The sample materials were provided by the customer in the form of sheets and strips of frame material. From these sample materials test specimens were cut and used for the testing. The dimensions of the test specimens were as notified in Table 1.

2			soundinger. NOL 210202)
	Internal identifier	Material identification	Dimensions of the test specimens used for testing [mm]
	07-3-47-1	Particle filter Nissan 272774BR1A	50 x 50 x 1
	07.0.47.0	Particle filter Nissan 272774BR1A.	E0 ++ 2E ++ 2

Table 1: Description of the sample materials (customer's project number: NCL 210202)

Divergent from the specifications of the DIN EN ISO 846:2019 porous plastic materials were tested.

Test organisms:

07-3-47-2

Table 2: Fundi used for testing according to procedure A of DIN EN ISO 846:2019

frame + adhesive

Fungi	Strain	Source of supply
Aspergillus niger	DSM 1957 = (ATCC6275)	DSMZ
Penicillium pinophilum	DSM 1944 = (CMI 114933)	DSMZ
Paecilomyces variotii	DSM 1961 = (ATCC 18502)	DSMZ
Trichoderma virens	DSM 1963 = (ATCC 69645)	DSMZ
Chaetomium globosum	DSM 1962 = (ATCC 6205)	DSMZ

DSMZ = Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig

According to the test standard, the bacterium Pseudomonas aeruginosa DSM 1253 (NCTC 8060) was used for procedure C of DIN EN ISO 846:2019.

Disinfection of test specimen:

The test specimens of the filter medium were disinfected and cleaned using 70 % ethanol before testing. Drying time was extended to 18 h. The frame material with the adhesive was not treated with 70 % ethanol to prevent the solution and distribution of adhesive components.

Media

Table 3: Media used for the testing according to procedures A and C of DIN EN ISO 846:2019

Procedure	Medium	According to passage		
С	Incomplete agar medium	5.2.3.4		

Test specimens for procedure A are incubated in petri dishes without agar medium placed in a box providing a relative humidity >95 %.

50 x 35 x 2

Test conditions, duration and temperature of testing

Polished stainless steel disks were used as negative controls for procedure A.

Test duration for testing was 28 days for procedures A and C. The testing was performed at a temperature of 29±1 °C for both procedures.

3 Results

All of the test specimens were evaluated visually and by light microscopy after the test period (Tables 4 and 5).

None of the three negative controls (polished stainless steel disks) showed growth (growth rating: 0).

according to procedure	S A and C UI ti	IE DIN LIN ISO 040.2013			
Material		procedure A			
		single values	Mean value		
Particle filter	Group I	00000	0		
Nissan	inoculated	0,0,0,0,0	Ū		
272774BR1A,	Group S	0.0.0			
filter medium	sterile	0,0,0	0		
		procedure C			
Particle filter Nissan	Group I inoculated	0,0,0,0,0	0		
272774BR1A filter, medium	Group S sterile	0,0,0	0		

 Table 4: Results of the testing of the filter medium of the particle filter Nissan 272774BR1A

 according to procedures A and C of the DIN EN ISO 846:2019

Procedure A

0 = No growth apparent on the test specimen surface, even under the microscope with a magnification of about 50x.

1a = No growth visible to the naked eye, but microscopically detectable covering up to 25 % of the surface

1b = No growth visible to the naked eye, but microscopically detectable covering up to 50 % of the surface

1c = No growth visible to the naked eye, but microscopically detectable covering more than 50 % of the surface

2 = Growth visible to the naked eye covering up to 25 % of the surface

3 = Growth visible to the naked eye covering up to 50 % of the surface

4 = Considerable growth covering more than 50 % of the surface

5 = Heavy growth covering the surface completely

Procedure C

0 = no bacterial growth

+ = bacterial growth

* = weak growth of fungi

Fig. 1: Procedure A: **Particle filter Nissan 272774BR1A, filter medium;** test specimen at the end of the test period (example);rating: 0

 Table 5: Results of the testing of the frame material + adhesive of the particle filter Nissan

 272774BR1A according to procedures A and C of the DIN EN ISO 846:2019

Material		procedure A		
		single values	Mean value	
Particle filter	Group I	00000	0	
Nissan	inoculated	0,0,0,0,0	0	
272774BR1A,	Group S	0.0.0	0	
frame + adhesive	sterile	0,0,0	0	
		procedure C		
Particle filter Nissan	Particle filter NissanGroup I inoculated	0*,0*,0*,0*,0	0	
272774BR1A, frame + adhesive	Group S sterile	0*,0*,0*	0	

For legend see Table 4

Fig. 2: Procedure A: Particle filter Nissan 272774BR1A, frame + adhesive; test specimen at the end of the test period (example); rating: 0

Evaluation of the results¹

		e		e		
Table 6:	Evaluation	of the	results	for the	tested	material

	Procedure	e A	Procedure C		
	Basic resista	ance against fungal growth in	Resistance against bacteria		
	absence of organic contamination				
Matorial	Growth	Evaluation of the	Pocult	Evaluation of the material	
Wateria	intensity	material	Result		
Particle filter Nissan 272774BR1A, filter medium	0	The material contains no nutrients for the growth of fungi; it is "inert" or "fungistatic".	0 No growth	The material contains no nutrients for the growth of bacteria.	
Particle filter Nissan 272774BR1A, frame + adhesive	0	The material contains no nutrients for the growth of fungi; it is "inert" or "fungistatic".	0 No growth	The material contains no nutrients for the growth of bacteria.	

¹ The following interpretations are not accredited by the DAkkS. They are not based on the requirements of DIN EN ISO/IEC 17025.